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2 Estirnate:

"[he g_):Ll _f E._t_m,tt,'_ is t_) t,tke ;uivantag_ ,)f attitu_h: inform_Ltion t() pr(_luce better pose while

st;Lying flexible ;trot r_)bust.

Currently there are ._ew_ral instruments that axe used fi)r ;tttitude: gyros, inclinometers, and com-

passes. Howew'.r, precise and Ilsefi_l ;Lttitude information cannot come from one instrument. [nt_

_or;_tion of rotational rates, from gyro data for example, would result in drift. Therefore, although

_o-yros are act:ur;_te in the short-term, accuracy in the long term is unlikely. Using absolute instru-

ments such a.s compass and inclinometers can result in an accurate me_surement of attitude in the

long term. However, in the short term, the physical nature of compasses and incfinometers, and

the dynaznic nature of a mobile platform result in highly volatile and therefore useless data.

The solution then is to use both absolute and relative data. Kalman Filtering is known to be able to

combine gyro and compass/inclinometer data to produce stable and accurate attitude information.
Since the model of motion is linear and the data comes in as discrete samples, a Discrete Kalman

Filter was selected as the core of the new estimator. Therefore, Estimate can be divided into two

parts: the Discrete Kalman Filter and the code framework.

2.1 The Discrete Kalman Filter:

2.1.1 Introduction to Discrete Kalman Filtering

Kalman Filtering has been a well-researched topic in the past forty or so years proving itself as

an excellent choice for navigational sensor fusion. Although there are several variations in the

technique, the one of primary interest in navigation is the Discrete Kalman Filter.

A Discrete Kalman Filter is described as an optimal recursive linear estimator. _ In other words, a

Kalman Filter estimates the state of a noisy linear system (xk) by using a previous estimate and

any new measurements (za). The system is noisy in the sense that there is both noise in the system

described (we-t) and noise in the measurement (v_:):

xk = Axk_ t + Bu_, + w__ l (1)

zl, = Hzk + vk(2)

Equation (I) is the linear stochastic difference equation describing the system, while equation (2)

describes the measurement z_: with respect to x_:. x_ is a column vector of size n, and z_ is a

column vector of size m. Then the n × n matrix A predicts current state from the previous state.



The n x l m;ttri× /3 then rel_te._ the ,q_ti_m,d ,:cmtrol input u, :t cc)[llmn vect(_r of size l, t_ the st;Lte.

The rr_ × r_,ITl;Ltrix H r,_lates the _t;Lte t,_ the me;l.,_nreme[tt.

[n or(te.r t() make a Kalman Filter possible in the sense ()f making the mathematics tractable and

the soluticm well defined, the noise must be white Gaussian noise. Whiteness implies noise not

(:orrelated with time (i.e. equal power in all frequencies), while Gaussian implies that the noise

is desc.ribed by a Gaussian probability density curve centered ;it zero (i.e. p(w) -.- N(0, Q) and

p(,:) --_ N(0, R) where Q is the process noise covaxiance matrix and R is the mea.surement noise

covariance matrix).

Therefore, the state of such a system can only be a vector of Gua.ssian distributions. Ifgiven all the

v,'triances and means of the system and mea.suring devices, the me,_sured input and the previous

state, a Kalman filter can produce a vector of the means and variances describing the current state.

There is no information lost since a Gaussian distribution can be completely described by its first

and second order statistics (i.e. mean (xk) and covaxiance (Pk))- Therefore, the new statistics can

then be reentered into the Kadman Filter for the next estimate. These statistics axe derived by two

different equations:

_ = _; + g_(z - _re;)(3)

P_ = (1- KkH)(&-)(4)

where P[ -- APe_tA r + Q and J:_- is the derived mean of xk from equation (1).

The principle component of those two equations is the Kalman gain K_:. Kk is picked to minimize

the covariance Pa (i.e. equation 4), therefore:

K_ = P[HT(ttP[H r + R) -t

In summary, the Discrete Kalman Filter can be implemented in 5 simple equations, divided as the

time update and the measurement update equations: a

time update:

A TP£ = AP___ + Q

mea.surement update:



= HT +

= ([ - K H)P,-

The time update st;tge (:an be thought of a._ the prediction stage where the next estim;tte is predicted

from the previous values. The me_surement update stage can be thought of _Ls the correction

stage where the predicted values are corrected by the new mea.surements. This leads to a simple

implementation in code.

2.1.2 The Function Kalman

Kalman Filtering in Estimate is used to combine data from any instrument for pose estimation.

The flexibility of the Discrete Kalman Filter and the similarities between position and attitude

allow the creation of a simple single function, called "Kalman', that is applicable to all types of

pertinent data (distance, velocity, acceleration). The measurement equation (2) allows specification

of the type of data entered, by H. This allows any type of device to input information as long as

the type of information is known. Also, both position and attitude have the same linear model,

which can be divided into each axis (x,y, and z). Therefore, without losing any generality, Kalman

can be designed for simple one-dimensional linear motion. This eliminates the use of large sparse

matrices while creating a more flexible function.

Kalman is basically just the five Discrete Kalman Filter equations applied to one dimensional linear

motion where the state xk is a vector of distance, velocity and acceleration with no input u, so:

A

i AT (&T)_/2 1
0 I AT

0 0 1

B=O

The inputs of tho function axe H, P,-l, za-1, zk, At, and R, and the output is the next estimate

(:rtc, P,). The inputs allow the function to be applied to all axes and from all instruments. The

only thing that remains is setting up the many calls to Kalman.

2.2 The Framework

The rest of the code involves using Kalman to input sensor data to a central repository fi)r pose.



\11 ,'._tim,d_',[ irtf_rru_t_i_rz is _r_'_[ in mw _ingh; _trvL_:t, tim _t._t,'/.!/p. 'l'h_' st_Lb'_Jlp,' im'llt_[_,S I;he

p,_s_,,v¢,lc_'iti_,s,:tnd:u:_:_,h,r:tt.i_m_,th_ c;th:_Ll_t_'dc_v:tri;mt:t,s,;m_lla._ttime _t" _nl>¢l;tt_.

l'his strm:t is ;u:_:_,ss_,d r,hnmgh four flmcti_ms: estimat,'_init, ,,._'tim_de_:]_:t_pos, est_mab'.get_ at-

titude, :thai _stimate._pdat,'. Estimate_in_t initializes tlz_' repository. Estimate.get_po._': ;tml esti-

m._te_g,'t_lm'atio'n g_'ts pose :tnd Ioc,ttion respectively. E._'timate._up&_te _zpdates the rep_sitory.

E.,'timate.:tet_po._e and estimate_get_location can be called ;mytime. It simply copies the pose a_nd

Ioc_ttion from the repository.

Estimate__tpdate is called after a measurement has been made. An instrument calls estimate_update

with its [D, data, amt time of measurement. This new data is then Kalman Filtered with the

repository data. This function is the bulk of Estimate.

When estimate_update is called, a different path is taken depending on the device ID, however, the

basic idea is the same: copy the current repository, convert data into earth frame, load the various.

inputs for Kalman, and copy the Kalman outputs into the repository. Conversion of the input data

is done through a transformation matrix created from previously cMculated attitude. The complete

inputs needed by Kalman are supplied by the repository and the device. The repository gives the

previous covariance and mean while each device is described by a Device struct. Device contains

the measurement variance, the type of measurement (H and motion type), the raw data from the

device, the time of last update, whether a device is in use, and if the device has given data yet. The

Device gives H and the measurement variance (R) to Kalman. With this information, Kalman can

be called once for each axis to predict the complete state. The new estimate is then copied into

the repository.

This scheme allows Estimate to work in an asynchronous environment. If a device does not call

estimate_update due to failure, congestion, etc., Estimate will only lose some accuracy during that

period. This scheme also allows Estimate to be easily modified to accommodate new instruments.

To add a new instrument, a new Device object and a new case of device ID must be created. The

new case would just be simply three KaIman calls, one each for each axis, using earth-frame data,

the previous estimate, and the Device as inputs.

3 Estimate Applied

3.1 Estimate on K9

Estimate is designed to be used on the K9 rover. Therefore, many initialization parameters were

needed, specifically the variances of the various instruments and the process noise.



K9 c,{rrently ,:ont;dns;m [:_,[U _', :t I'CM';. ;u,t en,:,),[ers. 'Fh,.' [MU is :t pa,:kag¢, of three gyros

;tmlr.hr,!e;tcc,:ler¢)m,,t,,rs(,)neeach fore_Lch;txis).'['he'FCM giw,s.d)soltLteroll(-50° to 50°),pitch

(-5@'to .3_F),and y;tw({}°t_)360") through _ magnetic compa.ss_tml[m:linometers.The encoders

_()thr(mgh :tdead-reckoningfunctiontoproduce roverframe transl;tth)nal:rody;twdelta,s.

All three instrumentswere never ;tc(:11rate[ymeasured fi)rcowtri;tn(:es,and ;tnaccur;tte_ssessment

of the processnoisew_s never made due to time constr;tints.In.stead,data wa.,_gathered from the

IMU ;rodTCM a.sK9 w_s moving. Only thegyrosof the [MU were used.The accelerometers'drift

rateschanged depending on how K9 was moving, therefore,itwas omitted from the filter.The

remaining sensors'filtervalueswere tweaked in Matlab so that Kalman Filteredvaluescame close

to real_md usefulvalues.Through trialand error,a well-filteredEstimate was produced.
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Figure 1: TCM(noisy signal), [MU(drifting signal), Filtered(clean signal following the TCM)

The noisy TCM data fused with the drifting IMU data produced a relatively stable and accurate

output.

3.2 Results on K9

After Estimate Was decently calibrated and Estimate integrated with the navigation and control

software, K9's navigational abilities were tested both indoors and in the field.

A simple test of rotation was done indoors. 360 ° turns were made with just dead reckoning and

with full use of estimate. Using just encoders, turns resulted in an error on the average around

30 °. Estimate turns produced slight differences (5°-I.0°), but these were not errors of estimation,

but rather of control. With Estimate, K9 knew it overshot or undershot its target, but the motors

had no feedback.



l'hc ,_t.herinsi_h:runw:L_t(_create.5m by ..5 m squ:trcs ,m ;__'t,tm,nt tlc_,)r by iss_ting ,tirect commands

r:tther t.h;m ttsing the navig:ttion softw;tre. Four types ,)t"runs w_,r_, made: j,tst ,le;td reckoning, _lead

rc_'koning with [MU and compass, dead reckoning with [ML', :rod dead reckoning with ,:_)mpass.
The la._t two served as tests that inw)lw_d failure of devices. Each run was compared to one of

_tn,)thertype be,:;utsecomparison between ;_realsquare would be unreasonable;us:tgainthereis

no feedback indirectmotor control.K9 withoutthe compa.ssproduced totallydegener;ttesquares

afterthe firstsquare was maAe. K9 with thecompa.'_sproduced rea.sonablesquares,however,due to

wheel slippage,the square would shiftina directiondepending whether itwas a counterclockwise

or clockwisesquare.

The field tests were more impressive. K9 ran two types of field r,ms. The first type w_ on relatively

flat terrain. The path wa.s a 4 m by 4 m square made by the navigation software (i.e. start at

(0,0), make a square and return to (0,0)). In this case, an absolute comparison can be made _ts the

path created resulted from feedback of information gathered by Estimate. The difference betw_n

the starting point and the final position of K9 is the error. The percent error can be calculated by

dividing the magnitude of the error by the total distance traveled. After driving one square:

Error in (x,y) Odometer % Error

Encoder (3.7 m, 1.17 m) 16.2 m 24

Encoder, IMU, TCM (0 m, 0.9 m) 15.2 m 5.9

The second type of test was a path which included a hill (3 meters long and .5 meters high). Using

the navigation software, a path across the hill and back to the starting point was made. This was

the most interesting test as the path was very uneven and the slippage occurred many times:

Error in (x,y) Odometer % Error

Encoder (4.63 m, 1.7" m) 14 m 35

Encoder, IMU, TCM (.25 m, -1.37 m) 17 m 8

4 Conclusion

Although few field tests were made due to time constraints, the positive impact of using Estimate

is apparent, however room for improvement can always be made.

The tests done were not complete to pinpoint fliture improvements. Future tests should be run

with measurements of _ound truth perhaps with GPS. With a complete comparison of the path

traveled, hints on causes of errors can be found.

Hopeflllly, fully calibrating Estimate will result in the elimation of some of those errors. Esti-

mate currently lines constant measurement and process covariance matrices. With these matrices



:L_ ccmt_ult._, K;Llm;ul Filter (:ov;triam:e ccmw,r_e_, m;tkhtg E,_'tzmab' become ;m irnt)hmwnt_thm of

r_:ursiw_ weighted _lu;tr_'s. Ou Kg, t,het, rue values qff th<)se m,_t.rices are hardily ccm._tant. Dynamic

rm)_leling _f K!) c_mhl b_, llsed t() pr_)_h,:e the)st ¢:ov;triance._. The m_)re, complete ._olution would be

to use P;_rticle Filtering to model each _ensor a._ K9 is moving. Another solution would be to use

;_ K,drnzm Smoother _)n raw telemetry (t;Lt;t from MI the sens()rs to (:onstrlLct ;t (:ov:_riance fi)r each

type ()f run.

[n conclusion, the haph;Lz, ar(tly cMibr;_ted Estimate works. It wouht be very interesting to see. it

applied to other robots. However, filture work is needed fi)r better calibration and more field tests.
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